

Short Research Article

Production and use of mycotoxins uniformly enriched with stable isotopes for their dosage in biological samples: (2) production of mycotoxins and their characterization^{\dagger}

OLIVIER PUEL^{1,*}, SOURAIA TADRIST¹, NICOLAS LOISEAU¹, MICHEL PEAN², FRÉDÉRIQUE BRAVIN³ and MARCEL DELAFORGE³

¹ INRA, UR 66 Laboratoire de Pharmacologie-Toxicologie, Toulouse, F-31931, France
² CEA Cadarache, DEVM/GRAP, Group de Recherches Appliquées en Phytotechnologie, St Paul les Durance, F-13108, France
³ CEA Saclay, DSV/DBJC/SBFM and URA CNRS 2096, Gif sur Yvette Cedex 91191, France

Received 3 August 2006; Revised 18 January 2007; Accepted 20 January 2007

 $\textbf{Keywords:} \ \text{mycotoxins;} \ ^{13}\text{C-labelling;} \ \text{MSn;} \ \text{fusariotoxins;} \ \text{mycophenolic acid;} \ \text{fumitremorgin C}$

Introduction

Mycotoxins are naturally occurring secondary metabolites produced by fungi. They are implicated in several toxic effects in animal and humans, and represent a real health hazard in all countries of the world.¹ Toxinogenic fungi from three genera (*Aspergillus*, *Penicillium*, and *Fusarium*) are widespread in various agricultural products and constitute an economically important worldwide problem. Pharmaco-

Figure 1 Fumonisin B1 specific isotopic pattern. Comparison between measured and expected isotopic ratios.

^{*}Correspondence to: Olivier Puel, Institut National de la Recherche Agronomique, Laboratoire de Pharmacologie-Toxicologie, 180 chemin de Tournefeuille, BP 3, Toulouse 31490, France.

E-mail: Olivier.Puel@toulouse.inra.fr

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

564 O. PUEL ET AL.

Figure 2 Mass spectra of deoxynivalenol ¹²C (left) and deoxynivalenol 10% U-¹³C from raw sample (right).

Figure 3 Mass spectra of 10% U-¹³C mycophenolic acid from *Penicillium brevicompactum* culture on enriched wheat.

logical studies of these compounds often encounter problems.

My cotoxin production was done using autoclaved 10% $^{13}\mathrm{C}$ and $^{15}\mathrm{N}$ grains and plant dry material as the only nutrient source for the fungi culture. The grains or plant materials were moistened for reach a_{W} value of 0.98, before sterilization. Then around 30 g of this plant material were inoculated with a suspension of 2×10^5 conidia.

Results and discussion

Uniformly enriched ¹³C and ¹⁵N fumonisins (B₁, B₂, B₃) productions were performed from *Fusarium verticilloides* strain culture on corn grains and the isotopic ratios were close to that expected for a 10% ¹³C and 10% ¹⁵N content (Figure 1).

Using *F. graminearum* and enriched wheat, we produced ¹³C zearalenone and ¹³C deoxynivalenol (Figure 2). Other ¹³C fungal secondary metabolites having therapeutic interest such as mycophenolic acid (immunosuppressor) (Figure 3) or the breast cancer resistance protein (BCRP) inhibitor, fumitremorgin C or ergot alkaloids can be produced following the same techniques (data not shown).^{2,3}

REFERENCES

- Riley RT. Mechanistic interactions of mycotoxins: theoretical considerations. In *Mycotoxins in Agriculture and Food Safety*, Sinha KK, Bhatnagar D (eds). Marcel Dekker Inc.: New York, 1998; 227–253.
- Allison AC, Eugui EM. Immunopharmacology 2000; 47: 85–118. DOI:10.1016/S0162-3109(00)00188-0
- 3. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. *Cancer Res* 2000; **60**: 47–50.